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Abstract
The Randall–Sundrum model is studied in six dimension with AdS4 or dS4

metric in the physical four-dimensional space. Two solutions are found, one
with induced five-dimensional gravity terms added to the induced cosmological
constant terms. We study the graviton modes in both solutions by transforming
the mass eigenvalue equation to a Schrodinger equation with a volcano
potential. The spectrum of gravitational excitations depends on the input
parameters of the theory, the six-dimensional and the effective four-dimensional
cosmological constants. The model gives a physically acceptable spectrum if
the four-dimensional cosmological constant is sufficiently small.

PACS numbers: 04.50.−h, 11.25.−w

1. Introduction

Recent intensive study of string theory revived interest in gravitational models with more than
four spacetime dimensions. Models with extra (compactified or infinite) dimension, confining
particles on 3-branes have been in the forefront of research in particle physics in the past
few years [1–4]. These models have features that, unlike that of traditional string theories,
may make the observation of extra dimensions possible in the near future. One of the most
successful models proposed by Randall and Sundrum (RS) [3, 4] is based on an orbifold
solution of the five-dimensional Einstein equation in AdS space, with a 3-brane fixed at the
zero of the fifth coordinate, u (and possibly at another value of u, as well), around which the
metric has a Z2 symmetry. This model may provide a solution to the hierarchy problem of
particle physics. It confines gravitons to the neighborhood of a brane.

The RS model with infinite extra dimensions [4] was extended to D > 5 dimensions by
Arkani-Hamed et al [5]. The model has intersecting (D − 2)-branes with gravity localized
at the intersection. At long distances, along the intersection, Newton gravity is recovered.
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With an appropriately chosen curvature Newton’s force is modified only at sub-millimeter
distances. The cosmological constants were fine tuned to result in a Minkowski space at the
intersection of the (D-2)-branes.

The original RS model is required to satisfy a fine tuning condition if we demand that the
3-brane of our world has Minkowski metric. However, in our world the cosmological constant
is probably nonzero and could have had a large value in the past. Thus, it is of interest to
investigate the generalization of the RS model when the physical four-dimensional subspace is
not Minkowski (M4), but AdS4 or dS4. Such a model has been investigated in five dimensions
[6–9]. In the horospheric coordinates, the space is infinite for AdS5, while it is finite for dS5.
For distances much smaller than the four-dimensional curvature radius and much larger than
the five-dimensional curvature radius Newtonian gravity is reproduced.

The aim of the present paper is to extend the D = 6 case of [6–9] to a warped four-
dimensional subspace. Just like [5], we require Z2 × Z2 orbifold symmetry in the two extra
dimensions. In addition, for simplicity, we also impose Z2 symmetry under the exchange of
the two extra coordinates. In a previous work Chodos and Poppitz [10] discussed a 3-brane
embedded in a six-dimensional bulk using a different type of ansatz. Their solution also
incorporated a nonvanishing cosmological constant on the physical 3-brane but the symmetry
of their ansatz is AdS4 × E(2).

Kaloper also found a D = 6 solution with dS or AdS geometries on the physical 3-brane
[11]. His solution uses two 4-branes intersecting at an angle different from the right angle. The
model has Z2 × Z2 symmetry. It is asymmetric in the exchange of the two extra dimensions.
Upon the analysis of small fluctuations no confined graviton mode was found in the case of
AdS geometry on the physical 3-brane.

In our analysis we have found two new solutions, both with two intersecting perpendicular
4-branes in the action. They are symmetric to the exchange of the two extra coordinates. These
solutions will be discussed in the next section. In section 3 we investigate small oscillations
around the global solutions. In a subset of solutions that includes the ground state we are
able to transform the mass eigenvalue equation to a Schrodinger form, with a now well-known
volcano potential. We also find the spectrum of Kaluza–Klein modes. In section 4 we conclude
our paper. Two appendices contain some details of the calculations.

2. Solution of the Einstein equation

In six dimensions, when the four-dimensional physical space is Minkowski, a solution can be
found for the orbifold problem [5], just like in five dimensions, using conformal coordinates.
One cannot however transform the coordinates to a horospheric coordinate system that has
been used to solve the five-dimensional RS model without fine tuning [8, 9].

Unfortunately, in six (or higher) dimensions, when the four-dimesional space is warped,
the metric cannot be brought either to the horospheric, or to the conformal form. Each of
these coordinate systems would only contain a single symmetric function of the two extra
coordinates, while, as we will soon see, the metric components depend on at least one non-
symmetric function of these variables. In fact, using appropriate coordinate transformations
the most general Z2 ⊗ Z2 ⊗ Z2 symmetric ansatz for a six-dimensional metric which is AdS
(dS) in the four-dimensional subspace (AdS4 or dS4) that, with a further gauge transformation,
can be brought to the form

ds2 = γAB dxA dxB ≡ �2[gµν dxµ dxν + g(u, v) du2 + g(v, u) dv2], (1)

where gµν is a four-dimensional metric satisfying the Einstein equation with a four-dimensional
cosmological constant λ, which may be positive (dS4 space), zero (Minkowski space) or
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negative (AdS4 space). Finally, � is a symmetric function that can be brought to the form of
the conformal factor for M4 space [5],

� = 1

[1 + a(|u| + |v|)]2
. (2)

With this choice, for M4 space, the metric would reduce to the form of [5] and g[u, v] = 1.
The only unknown function in the metric, g(u, v), has no symmetry property for the

exchange of the two coordinates. As we will see below, the global solution of the Einstein
equation for function g(u, v) contains a single integration constant. This constant will be fixed
later using the Israel junction conditions.

2.1. Global solution of the Einstein equation

The nonzero components of the Einstein tensor are Gµµ with µ = t, x, y, z,Guu,Gvv and
Guv . The four components, Gµµ provide identical second-order partial differential equations in
variables u and v. It is easy to show that these equations follow, due to a Jacobi identity, from
the rest of the equations. Thus, the bulk equations Guu = −guu�6 and Guv = 0 are sufficient
to find a unique (up to an integration constant) solution. The equation Gvv = −gvv�6 follows
from the first equation using the replacement u ↔ v. These equations contain only first-order
derivatives of the unknown function g(u, v).

To simplify notations we will use variables u and v rather than |u| and |v|. We may
assume for the purpose of finding bulk (six-dimensional) solutions that u, v > 0. The role
of Z2 × Z2 symmetry is important only when one solves the junction conditions that we will
discuss after finding the global solution of the Einstein equation.

The details of the solution are presented in appendix A. We just recapitulate the results.
The solution of the system of equations is given in the form

g(u, v) = 1

S(σ) + A(δ, σ )
, (3)

where we defined σ = u + v and δ = u − v. A(δ, σ ) is an odd function of δ. S(σ) is given by

S(σ) = 1

a2

[
(1 + aσ)2λ

6
− �6

20
+ C(1 + aσ)5

]
, (4)

where C is a yet undetermined integration constant.
The Taylor series of A(δ, σ ) in δ is

A(δ, σ ) =
∞∑

k=0

δ2k+1αk(σ ), (5)

where

α0(σ ) = S ′(σ ), (6)

and αk satisfies the recursion relation

αk(σ ) = − 1

S(σ)(2k + 1)

k−1∑
m=0

α′
m(σ)αk−1−m(σ). (7)

The recursion relation (7) can be used to generate αk in an arbitrary order. The first few
αk are listed in appendix A.

Note now that g(u, v) is unique, except for the choice of the scale a and the integration
constant C. One of these constants can be fixed by setting the scale of variables u and v. The
other will be fixed by the junction conditions to be discussed later.

As usual, the scale is set by demanding that the metric is Minkowski at u = v = 0. As
A(0, 0) = 0 we find the following value for the conformal scale from (4):
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a =
√

λ

6
− �6

20
+ C. (8)

Note that a solution may exist for both positive and negative cosmological constants, as long
as λ

6 − �6
20 + C > 0.

2.2. Israel junction conditions

Due to the requirement of Z2 × Z2 symmetry the derivatives of the components of the metric
tensor are not continuous at u = 0 and v = 0. This discontinuity will generate junction terms
in the Einstein tensor, localized on the u = 0 and v = 0 planes. These junction terms are

	G(6)
µµ = −gµµδ(v)

[
8a(1 + au)

g(0, u)
− g,v(u, v)|v=0(1 + au)2

g(0, u)g(u, 0)

]
+ (u ↔ v),

	G(6)
uu = −δ(v)guu

8a(1 + au)

g(0, u)
(9)

	G(6)
vv = −δ(u)guu

8a(1 + av)

g(0, v)
.

To satisfy the Einstein equations at u = 0 and v = 0 two 4-brane contributions are required
to cancel (9). Brane contributions come from the variation of u = 0 and v = 0 4-brane
terms such as a tension term (i.e. a five-dimensional cosmological constant term) and possibly
of dynamical terms. As we will see later the junction conditions will impose three u and v

independent constraints on the constants of the theory. One of these can be used to fix the
integration constant C. Then the brane contributions must in general contain two additional
constants. One of these is the cosmological constant, �5. We choose the other constant as the
five-dimensional gravitational constant, G5. Thus, we propose to add the following terms to
the action:

S5 = 1

8πG5

[∫
d4x du

√−gR(5) + �5

∫
d4x du

√−g + (u ↔ v)

]
, (10)

where R(5) is the five-dimensional Ricci scalar constructed from the induced metric on the
v = 0 or u = 0 brane. It is known that adding a four-dimensional gravity term to the five-
dimensional action changes predictions for post-Newtonian effects, contradicting observations
[12–14]. The question, whether a similar problem arises about our solution with induced five-
dimensional gravity will be taken up in a future publication.

The variation of (10) gives

G(5)
µµ + gµµ�5 = gµµ

[
�5 − λ(1 + au)2 +

6a2

g(u, 0)
+

3a

2
(1 + au)

g,u(u, 0)

g2(u, 0)

]
,

(11)

G(5)
uu + guu�5 = guu

[
�5 − 2λ(1 + au)2 +

6a2

g(u, 0)

]
.

There are similar contributions on the u = 0 brane, obtained from (11) by the exchange
(u ↔ v). One of the advantages of maintaining the u ↔ v symmetry is that one needs to deal
with two junction conditions rather than four.

It is easy to see that when we substitute our solution g(u, v) into (9) and (11) multiplied
by δ(v) the sum of these contributions does not vanish at all values of u. This alone does not
mean that the six-dimensional junction term cannot be canceled by the brane terms of (10).
The gauge of the junction contributions and of the brane contributions may be misaligned. In
the following section we will show that this is indeed the case.
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Another way to satisfy the junction conditions would be to add further invariants to the
action, such as Lovelock terms, but one would need an infinite number of such terms in the
Lagrangian to have a chance to satisfy infinitely many constraints imposed by the junction
conditions.

2.3. Coordinate transformation

As the six-dimensional action is gauge invariant, we can apply a gauge transformation to its
contribution to the junction condition. We require that the gauge transformations satisfy the
following conditions:

(i) The (u ↔ v) exchange symmetry is maintained. By this requirement we reduce the
number of junction equations to be satisfied from four to two.

(ii) We require that the transformed coordinates are such that u′ and v′ vanish when u and v

vanish, respectively. This constraint is required by the junction equations. It implies that
the position of the branes is unchanged by the gauge transformation.

(iii) We will maintain the scale of the coordinates at u = v = 0, by requiring that the
components of the gauge transformed metric tensor g̃uu and g̃vv also tend to one when
u, v → 0.

These requirements lead to the following form of coordinate transformations:

u → u′ = h(u, v) v → v′ = h(v, u), (12)

where h(u, v) is a C2 function, h(0, v) = 0, h,u(u, v)|u=v=0 = 1.

We will show in appendix B that the two junction conditions can be satisfied by an
appropriate choice of h(u, v). While that result is important, the physical consequences of our
solution can be explored without the detailed knowledge of the form of the function h(u, v)

provided h(0, 0) = 0 and h,u(u, v)|u=v=0 = 1.
When one writes the junction conditions one must take care of the fact that the action is

varied with respect to gAB , rather than g̃AB . In other words, certain linear combinations of (9)
enter the junction conditions. Denoting these appropriate linear combinations by 	R

(6)
AB the

junction conditions at v = 0 are
√−g̃

G6
	vR

(6)
AB +

√−g

G5
R

(5)
ABδ(v) = 0. (13)

One obtains two independent junction conditions, one for choosing A = B = µ and other for
A = B = u (see appendix B). The junction contributions are functionals of two independent
single variable functions, f1(u) = h(u, 0) and f2(u) = h,v(u, v)|v=0, in an algebraic manner.
The only constraints on these functions are f1(0) = 0 and f ′

1(0) = f2(0) = 1. We must
satisfy these three independent constraints. Once these constraints are satisfied one can always
find two functions, fi(u), which solve the two junction conditions. The function f2(u) enters
the junction conditions in a very simple manner: its third power is a multiplier of the six-
dimensional junction contributions. Taking the two junction conditions at u = 0 provides
two constraints on the constants of the model. Taking the ratio of the two junction conditions
eliminates f2(u) from the resulting condition. Taking a derivative of the resulting equation
with respect to u, at u = 0, provides a third constraint. The function h(u, v) enters each of
the three constraints only through the combinations f1(0) = 0, f ′

1(0) and f2(0), all fixed by
our constraints on the gauge transformation. All other derivatives of the junction conditions
taken at u = 0 contain unconstrained derivatives of h(u, v) that are determined by these very
equations.
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It is clear now why, in general, we need the two terms in (10) (cosmological constant and
gravity). Recall that besides the coupling constants G5 and �5 we still have one undetermined
integration constant, C (or, alternatively the conformal scale, a, which is related to C through
(8)). The three equations obtained from the junction conditions are just sufficient to fix these
three constants. In fact, one could replace the five-dimensional scalar curvature term of the
Lagrangian by another gauge-invariant term, such as a Lovelock term, but the scalar curvature
term is the simplest choice.

The two junction conditions taken at u = 0 provide the following equations:

0 = − 8a

G6
− 1

G5

(
9a2 − 1

2
λ − �5 +

3

4
�6

)
(14)

0 = − 8a

G6
− 1

G5
(2λ − 6a2 − �5), (15)

where we used the expression, obtained from our solution,

ag,u(u, 0)|u=0 = λ − 10a2 − 1
2�6. (16)

The set of equations (14) and (15) have two solutions.

(i) Subtracting the two equations from each other implies

a2 = λ

6
− �6

20
, (17)

or in other words, the integration constant C = 0. Then we also have

�5 = 8aG5

G6
+ λ +

3

10
�6. (18)

The third constraint equation, to be discussed below will also determine the five-
dimensional gravitational constant, G5.

(ii) Note that if we take the limit G5,�5 → ∞ (no scalar curvature term on the brane) such
that �̃5 = �5/8πG5 is finite then (14) and (15) become identical, providing an expression
for �̃5

�̃5 = a

πG6
. (19)

The third constraint equations will fix the yet undetermined a (or, alternatively, fix C).

Now for solution 1, the mere presence of the dynamical term on the v = 0 and u = 0
branes, combined with the fact that the metric tensors depend on |u| and |v|, respectively,
requires the existence of a non-vanishing tension on the u = v = 0 3-branes, just like in the
five-dimensional Randall–Sundrum solution. We denote the tension by �4. We obtain

�4 = −6λ. (20)

If λ = 0 (non-warped space) the contribution on the 3-brane vanishes and the solution reduces
to that of [5].

Let us consider now the third and final constraint equation. As we indicated earlier
it is obtained from the derivative of the ratio of the two junction conditions, eliminating
h,v(v, u)|v=0 from the equation. To reduce the obtained equations to a constraint on our
constants we need to calculate derivatives of g(u, v) at u = v = 0. These can be determined
either using the explicit form of g(u, v) from (3) or directly from taking derivatives of (14)
and (15) and setting u = v = 0. To simplify matters we write the third constraint separately
for the first and second solution. For the first solution (G5 = finite) we obtain, using (17)

1700�2
5 − 40�5(80 + 27�6) + 3

(
500λ2 + 340λ�6 + 57�2

6

) = 0. (21)
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Table 1. Summary of parameters characterizing the two solutions.

Solution a C G5 �5 (�̃5) �4 S(σ)

Solution I ±
√

λ
6 − �6

20 0 − 3aG6
34 −10λ − 19

5 �6 −6λ −rw2 + 1 + r

Solution II ±
√

11λ
100 − �6

20 − 17λ
300 ∞ a

πG6
0 1 + r

(
33+17w5

50 − w2
)

For the second solution (G5 = ∞), after substituting (19), we obtain for the third constraint

100a2 − 11λ + 5�6 = 0. (22)

These equations can be used to calculate the rest of the constants. All the constants of the
theory are determined by the parameters of the six-dimensional world, G6 and �6 and of the
physical cosmological constant, λ. The value of parameters found for the two solutions are
given in table 1, where we use the notations r = −λ/6a2 and w = 1 + aσ.

We can see from table 1 that in fact, taking into account the two possible signs for a, we
have four independent solutions, rather than two. Note that at a special choice of the parameter
r, r = −38/41 the combination 50λ + 19�6 = 0 and �5 = 0. Then the geometry on the
intersecting branes is asymptotically Minkowski.

2.4. The range of variables u and v

The range of variables u and v plays an important role in the investigation of small deformations
of the above solutions. The linearized deformations determine the spectrum of gravitational
excitations and the nature of the gravitational force among massive objects.

Form (3) of the solution implies that zeros of S(σ) ± A(δ, σ ) (for both signs) constitute
boundaries in the (u, v) space. Suppose the equation of such a boundary is on the curve
δ = δ(σ ). Then δ(σ ) satisfies

[g(u, v)]−1 = S(σ) + A(δ(σ ), σ ) = 0. (23)

This equation can easily be solved. Consider that whenever (23) is satisfied, unless
δ = 0, [g(v, u)]−1 �= 0. Then the equation Guv = 0, (A.2) of appendix A implies that
g,v(u, v) must also vanish. Then, differentiating (23) with respect to σ and comparing it
with the substitution of δ → δ(σ ) into the equation g,v(u, v) = 0 we obtain δ′(σ ) = −1.
Integrating this equation we obtain δ(σ ) = −σ + 2c, where c is a constant. Owing to the
definition of δ and σ , the boundary of the domain is determined by a constant value of u, u = c.
In other words, (g[c, v])−1 = 0 for all admissible values of v. This constant can be determined
by taking the limit v → c. At this point δ = A(δ, σ ) = 0 and σ = 2c. In other words, the
equation

S(2c) = 0 (24)

provides the corresponding value of c.
Note now that when guu = g[u, v] has a pole at u = c gvv = g[v, u] also has a pole at

v = c. Then, whenever (24) has a positive solution the range of variables u and v is the square
|u|, |v| < c.

Let us examine now the solution of (24) for our four metric solutions. When a > 0 the
boundary r = 0 separates domains with or without solutions. However, when a < 0 the
corresponding boundary value is r = r0, where r0 = −1 for solution I and r0 = −50/33 for
solution II. Owing to the identities r = −6a2λ and 1 − r/r0 = a220�6, these boundaries
separate domains with different curvature: r > 0 corresponds to AdS4 and r < 0 to dS4 while
r > r0 corresponds to AdS6 while r < r0 corresponds to dS6. Thus, the boundaries are:

7
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(i) Solution I, a > 0
The boundary, c, satisfies

− r(1 + 2ca)2 + 1 + r = 0 (25)

where r = −λ/6a2 > 0. Then for r > 0 (AdS4) the range of variables u and v is

|u|, |v| <
1

2a

(√
r + 1

r
− 1

)
. (26)

For r < 0 (dS4) the range of |u| and of |v| is infinite.
(ii) Solution II, a > 0

(24) has the form

−r(1 + 2ca)2 + 1 + 33
50 r + 17

50 r(1 + 2ca)5 = 0. (27)

No analytic solution of this fifth-order equation exists but at small positive values of r the
range of u and v is infinite. Increasing r we obtain a critical value, above which the range
becomes finite, because (27) has a positive solution. This critical value is obtained from
the coincidence of the zero (27) with the zero of the derivative S(σ). This happens at

rmin = 1

w2
min − 33

50 − 17
80w5

min

	 115.5, (28)

where

wmin =
(

20

17

)1/3

= 1 + 2acmin. (29)

If r increases, starting from rmin then the boundary value of |u| and |v| decreases from
cmin(rmin) = (1/2a)[(20/17)1/3 − 1] = 1

a
0.2095 to cmin(∞) = 1

a
0.0538 . For negative

values of r (27) always has a positive root, so the range of variables is finite.
(iii) Solution I, a < 0

The largest possible physical range of w = 1 + aσ is 0 < w < 1. There is a solution
of the equation S(σ) = 0 only if r < −1. This corresponds to dS6 space. The solution
of the S(σ) = 0 equation provides the following bounds for

|u|, |v| <
1

2|a|

(
1 −

√
|r| − 1

|r|

)
. (30)

For r > −1 the range of u and v is bounded only by the condition |u| + |v| < 1/|a| (i.e.
finiteness of the conformal factor).

(iv) Solution II, a < 0
At w = 1, S = 1. At w = 0, S = 1 + 33, r/50. Therefore, if r > r0 = −50/33 (AdS6)
there is no solution of the S(σ) = 0 equation (it is easy to see that there is no minimum of
S(σ) lower than 0). However, there is a solution of the equation S(σ) = 0 for r < −50/33
because S(w = 0) < 0. So w � wmin > 0. These values of r correspond to dS6 space
(�6 > 0). Just like in the case a > 0 there is no analytic solution for w < wmin.

3. Small oscillations

Suppose the metric solutions we previously found, denoted 0gab, are modified by a small
perturbation, such as

8
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gab(ε) = 0gab + hab. (31)

As now it is standard in the literature, we will impose the TT (traceless, transverse) gauge
conditions on hab. In addition we will impose axial gauge conditions, hau = hav = 0. Thus,
the nonzero components of the TT tensor h are hµν , where µ, ν = t, x, y, z. This gauge is
also called the Randall–Sundrum gauge. The advantage of this gauge (in contrast to the TT
conditions applied to the ‘complete oscillations’, �2hab), as we will see below, is that for the
graviton mode hµν is independent of u and v. Then, at least for a > 0 the conformal factor
�2 insures localization. In general, gravitational excitations are dependent on these variables,
as well. They may or may not be localized to the intersection of the branes. In what follows,
we will drop the superscript 0 from the background metric, 0gab.

The components of h satisfy the following wave equation:
1
2∇A∇Ah + 1

5�h = 0, (32)

where A = t, x, . . . , u, v and ∇A is a covariant derivative in the background metric, γAB .
Equation (32) is separable. Multiplying by the conformal factor we obtain

gµν

2
∇̃µ∇̃νh +

1

2
∇ui ∇ui

h +
1

5
�h = 0, (33)

where the covariant derivatives ∇̃µ are taken in the four-dimensional metric gµν and ui is a
shorthand notation for u and v.

Now the first term of (33) contains only derivatives and metric components dependent on
t, x, y and z, while the rest of the terms depend on u and v only. Using a factorized ansatz
for the wavefunction and introducing the gravitational mass m we obtain the following two
equations (here we assume a specific form for the four-dimensional metric: Minkowski with a
warp factor gyy = gxx = −gtt = ω2 = e−2bz for AdS4 and gii = ω2 = e−2bt , where i denotes
a spatial coordinate, for dS4)

m2h = gµν∂µ∂νh ± 7

2
b∂ξh − 5

3
λh, (34)

m2h =
[
λ�−1

4a
− �6�

8a
+

5a�

4g(u, v)
+

3a�

4g(v, u)
− ∂vg(u, v)

g(u, v)

(
1

g(u, v)
+

1

g(v, u)

)]
∂uh

+
∂2
uh

g(u, v)
+ (u ↔ v), (35)

where the upper sign corresponds to dS4 and the lower one to AdS4. We use ξ = z or t and
λ = ±3b2.

The solution of (34) is straightforward. It describes wave oscillations

h1 ∼ ei(kxx+kyy+kzz−kt t), (36)

where kt =
√

k2
x + k2

y + k2
z + m2, provided the coordinates are much smaller than the curvature

radius, 1/b, otherwise the wave is modified, as we will discuss it below. In particular, the
m = 0 mode always exists since h2 = const is a solution of (35). It describes a graviton, as
long as the corresponding wavefunction is normalizable. In what follows, we will examine
the solutions of (35) and their normalization.

The exact solution of (34) for dS4, using an ansatz h = ei(xkx+yky+zkz)f [t], is

f [t] = e7bt/4H(2)
n (ebt k/b) (37)

where H(2)
n = Jn + iYn is the Hankel function of the second kind, n = i

√
m2/b2 + 31/16

and k =
√

k2
x + k2

y + k2
z . When one uses the asymptotic expansion for large order but fixed

9
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argument to order (i.e. taking the limit b → 0) [15] then we can write, after factoring out a
diverging constant

f [t] ∼ e−it
√

k2+m2+O(b/k). (38)

As a final note, as we indicated earlier, we mention that (35) illuminates the special role of
the seemingly arbitrarily chosen conformal factor, �. The ground-state wavefunction (m = 0
solution of (35)) is constant. Note however that the metric, and with that h was defined
in (1) with a factor �2 extracted. Thus the true ground-state wavefunction (provided it is
normalizable) is exactly �2 for every choice of our parameters.

3.1. Mass spectrum of excitations

In general, (35) is too complicated to be transformed to the volcano potential form, familiar
in five-dimensional brane theories, and solved using standard methods for solving a one-
dimensional Schrodinger equation. Consider, however that the coordinates σ = u + v and
δ = u − v are somewhat analogous to the radial and angular coordinates in a Schrödinger
equation. Thus, one expects, that solutions dependent on the ‘radial coordinate’, σ , only
well represent the spectrum of excitations. Among others, the graviton state, with a constant
wavefunction, is clearly such a state.

Indeed, using (3) we can see that for functions, independent of δ (35) reduces to

−Sh′′ + sign(σ )

(
1

2a
λ̃�−1 − 1

4a
�̃6� − a�S

)
h′ = m2h, (39)

where function S is given in table 1. Note that the coefficients of (39) are independent of δ, just
like in a Schrodinger equation with rotational invariant potential the equation for rotational
invariant states is independent of the angles. The reason for this cancellation is that the explicit
δ-dependence of (35) comes only through multipliers A(δ, σ ), which in turn are associated
with a differentiation with respect to δ.

Before we can bring (39) to a Schrödinger form we need to introduce a new variable, ω,
defined by

ω = sign(σ )

∫ |σ |

0

ds√
S(s)

. (40)

The integration in (40) can be analytically performed in the case of solution I only. After the
change of variables we can eliminate the first derivative from (39) and obtain a Schrödinger
equation with a volcano potential. This is done by factoring out an appropriate function ρ(ω)

from h. Finally, we obtain the eigenvalue equation with the volcano potential in the form

−∂2
ωh + V (ω)h − δ(ω)

1

4a
[2λ − �6 − 4a2 + 2aS ′(0)]h = m2h, (41)

where

V (ω) = −λ

2
+ �2 (�6 − 2λ�−2)2

64a2S
− 1

4
a2S�2 − �

8aS
S ′(�6 − 2λ�−2) +

3S ′2

16S
− S ′′

4
. (42)

We use the notation h for the eigenfunction, though strictly speaking the function h in (41)
differs by a factor of ρ from that used in (39).

In � and S the variable σ is understood to be substituted by σ(ω), the solution of (40).
The explicit form to the potential in terms of variable ω can only be given for solution I, but
using (41) one can qualitatively analyze the spectrum for solution II, as well.

The range of variable ω and the behavior of the potential at the end of the range, ω0, plays
an essential role in the nature of the mass spectrum. Naturally, that range is dependent on

10
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the choice of gauge, but the variable ω is the natural coordinate. Anyway, the mass spectrum
itself is gauge invariant.

The m = 0 eigenfunction of (39), candidate for the graviton as long as it is normalizable,
is a constant. Then the corresponding eigenfunction of (41) is proportional to [ρ(ω)]−1 and
given by

h0(ω) = exp

{
1

8a

∫ ω

0
[�(�6 − 2λ�−2) + 4a2�S − 2a2S ′]

dω′
√

S

}

= w1/2

S1/4
exp

{
1

8a2

∫ w

1
(�6 − 2λw2)

dw

wS

}
, (43)

where � = 1/w, S, and S ′ must be regarded as functions of ω. Here S ′ is the derivative of
S with respect to aσ . Note now that h0 has no nodes, so provided it is normalizable it is the
graviton state and the ground state of the eigenvalue equation.

One can make a general comment concerning the mass spectrum. The potential depends on
λ only through the dimensionless parameter r that characterizes the function S(σ) completely.
The remaining parameter a just sets the scale for the excitation spectrum. The value of r fixes
the asymptotic curvature of the six- and four-dimensional spaces. Introducing the parameter
r0 = −1 for solution I and r0 = −50/33 for solution II we have

• dS6 and dS4 for r < r0;
• M6 and dS4 for r = r0;
• AdS6 and dS4 for 0 > r > r0;
• AdS6 and M4 for r = 0;
• AdS6 and AdS4 for r > 0.

3.2. Normalization

The normalization condition is very simple in the Schrödinger type, ‘ω-representation’. The
norm is finite if the integral over the square of the wavefunction converges. It is sufficient
to know the wavefunction at the endpoint of the range of ω, ω0 (possibly infinity), as only
the singular behavior at ω0 can make the solution non-normalizable. Even when we are not
able to solve the eigenvalue equation exactly we are able to determine the behavior of the
solutions at ω0. However, the true restriction on the eigenfunctions is stronger. We must
consider only solutions that can be orthonormalized, otherwise the small oscillation cannot
be expanded into modes of definite mass. The condition of orthogonalization is that the
Wronskian, h1h2

′ − h2h1
′ vanishes at ω = ω0 [16]. If the combination h1h

′
2 is infinite then

this condition is certainly violated. This condition is particularly important in the case of
inverse square potentials, which will often make their appearance below.

Every case in which the range of ω is finite the potential energy has the endpoint behavior
V 	 − 1

4 (ω0 − ω)−2. The only acceptable solution behaves (neglecting subleading terms of
the potential) as a Bessel function,

√
xJ0(mx), near x = ω0 −ω = 0. The Wronskian vanishes

for a pair of such solutions at different values of m and the solutions are orthogonal. The
Wronskian for two singular solutions, which behave like

√
xY0(mix), diverges logarithmically

at x = 0 making these solutions unacceptable. Having a unique acceptable solution implies
that imposing the boundary condition at ω = 0 introduces the usual quantization condition
and the spectrum is discrete. Then, owing to the fact that in terms of the original variables, u
and v a zero mass solution (independent of u and v) exists, there is a physical graviton state.

Note that the normalizability and orthogonalizability of the solutions of the Schrodinger-
like equation in variable ω does not insure the finiteness of the contribution of the corresponding
small oscillations to quantities like the ‘energy’ defined by Mannheim [16]. That requires

11
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Table 2. Solution I: curvature of space, range of ω, properties of the excitation spectrum and the
range of weakly coupled states, as a function of parameter r.

r Space Graviton state Level spacing Weakly coupled

r > 0 AdS6, AdS4 Isolated 	m ∼ (−λ)1/2 m < (−�)1/2

r = 0 AdS6, M4 Marginal Continuous spectrum m < (−�)1/2

−1 < r < 0 AdS6, dS4 Isolated 	m ∼ (−λ)1/2 m < (−�)1/2

r = −1 M6, dS4 Isolated 	m ∼ (−�)1/2 None
� −1 dS6, dS4 Isolated 	m ∼ (−�)1/2 None

Table 3. Solution II: curvature of space, range of ω, properties of the excitation spectrum and the
range of weakly coupled states, as a function of parameter r.

r Space Graviton state Level spacing Weakly coupled

r > r0 AdS6, AdS4 Isolated 	m ∼ (−�)1/2 None
r = r0 AdS6, AdS4 Isolated Continuous spectrum None
r0 > r > 0 AdS6, AdS4 Isolated 	m ∼ (−λ)1/2 m < (−�)1/2

r = 0 AdS6, M4 Marginal Continuous spectrum m < (−�)1/2

−50/33 < r < 0 AdS6, dS4 Isolated 	m ∼ (−λ)1/2 m < (−�)1/2

r = −50/33 M6, dS4 Isolated 	m ∼ (−�)1/2 None
� −50/33 dS6, dS4 Isolated 	m ∼ (−�)1/2 None

the convergence of integrals over the variables u and v of the covariant weight,
√

g and the
square of the small oscillation. This constraint come into focus for a < 0 solutions, for which,
depending on r, the end of range of w = 1 + a(|u| + |v|) may be w = �−1 = 0, at which point∫

dδ
√

g ∼ w−5 has a singularity.
In tables 2 and 3 we summarized our results for both of our solutions for a > 0. The

nature of the solutions changes as a function of r = −λ/a2, among others the curvature of
the six- and four-dimensional spaces, the question whether the graviton state is isolated, the
order of level spacing of the spectrum, and the range of mass excitations with a weak coupling
is displayed. The last two columns are important only for λ � �, i.e. |r| � 1. This is the
range in which corrections to the short and long range behavior of gravity do not contradict to
observations in our current universe.

3.3. Mass spectrum for a < 0

If S(σ) has no zero in the interval 0 < w < 1 (here w = 1 − |a|σ ) then the solution is always
unacceptable due to the divergence of the measure at w = 0. In all cases when a zero exists
the parameter r is large. Though these solutions are mathematically acceptable, they could
not be used for phenomenological purposes, for reasons discussed in the a > 0 case.

4. Conclusions

We solved the six-dimensional Einstein equations and Israel junction conditions in a space
with mirror symmetry and exchange symmetry, (Z2)

3, in the two extra dimensions, when the
four-dimensional space at the intersection of two five-dimensional branes is warped. Due to
their coordinate dependence, the junction conditions can only be solved if the gauges in the
six- and five-dimensional actions are misaligned. We found two solutions, one with induced
gravity terms on the branes, and other with an induced cosmological constant only. For each of
these solutions we found two possible alternatives, having conformal factors that are increasing
and decreasing, respectively, as the modulus of the fifth or sixth coordinate increases. We

12
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also studied small perturbations around our solutions. Due to the complexity of the equations
satisfied by these perturbations we restricted ourselves to those depending only on the sum
of the extra coordinates. One of the oscillatory solutions of these equations is the massless
graviton state, which is always localized at the intersection of the 4-branes. In addition there
is an infinite set of solutions corresponding to gravitational excitations. The analytic form of
the ‘volcano potential’ could only be derived for the solution with induced five-dimensional
gravity, but the graviton state and the nature of the gravitational excitation spectrum could
always be analyzed. We found that for increasing conformal factors the graviton state is not
normalizable. This is similar to the situation found in five dimensions by Karch and Randall
[6]. However, here the lowest lying normalizable state is massive, leading to an unacceptable
short range gravitational force. For decreasing conformal factor, depending on the values of
the appropriately normalized six-dimensional and four-dimensional cosmological constants,
�̃6 and λ̃, we obtained a variety of spectra. For most values of the cosmological constants we
found an acceptable spectrum, with a zero mass graviton localized at the intersection of the two
branes and a gravitational excitation spectrum that can be tuned not to lead to contradictions
with experiments verifying Newton’s law in the laboratory, provided �̃6 >> λ̃. This work
is an extension of similar investigations in five dimension [6–9] to six dimension. Previous
studies of a six-dimensional model with similar symmetries allowed only for M4 space at the
intersection of the branes [5]. The model we studied requires the input of the value of the four-
dimensional cosmological constant by hand. We find this esthetically not very satisfactory.
This blemish could in principle be circumvented by the addition of a global scalar, or several
scalars, like quintessence, which could possibly generate a cosmological constant which may
even depend on time. We intend to return to this problem in a future publication. We are
somewhat perplexed by the existence of two acceptable solutions at given values of the input
parameters (cosmological constants). We have not been able to find a physical principle which
would allow us to discard one of the solutions yet. One possibility is to investigate observable
post-Newtonian effects. The models under discussion have two separate gravity actions in six
and five dimensions. Therefore, just like the Dvali–Gabadadze–Porrati (DGP) model [12],
they could suffer from the van Dam–Veltman–Zakharov [13, 14] type of discontinuity and
could be severely constrained. For more details we refer the reader to the following papers
[17–20].
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Appendix A. Solution of the global equations

The two Einstein equations that we use to find the solution are then

Guu = guu

[
10a2

g(u, v)
+

10a2

g(v, u)
− 2λ̃(1 + a(u + v))2

− (1 + a(u + v))
2a

g(v, u)

(
g,u(v, u)

g(u, v)
− g,v(v, u)

g(v, u)

)]
= −�̃6guu, (A.1)

Guv = − 2a

1 + a(u + v)

(
g,v(u, v)

g(u, v)
+

g,u(v, u)

g(v, u)

)
= 0, (A.2)
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where λ̃ = 8πG4λ. Substituting g,u(v,u)

g(v,u)
from (A.2) into (A.1) we obtain a first-order

differential equation for the symmetric function

F(u, v) = 1

2g(u, v)
+

1

2g(v, u)
(A.3)

20a2F(u, v) − 2λ(1 + a(u + v))2 + �̃6 − (1 + a(u + v))4aF,v(u, v) = 0. (A.4)

First, these equations imply that the derivative F,v(u, v) is also symmetric. That is possible
only if F(u, v) is a function of σ = u+v only. Keeping this in mind it has an analytic solution

F(u, v) ≡ S(σ) = 1

a2

[
(1 + aσ)2 λ

6
− �̃6

20
+ C(1 + aσ)5

]
, (A.5)

where C is an integration constant.
Now defining δ = u− v and using (A.3) we can write g(u, v) in terms of an odd function

of δ, A(δ, σ ) as

g(u, v) = 1

S(σ) + A(δ, σ )
. (A.6)

Inserting (A.6) into (A.2) we obtain a differential equation for A(δ, σ )

A(δ, σ )A,σ (δ, σ ) + S(σ)[A,δ(δ, σ ) − S ′(σ )] = 0. (A.7)

We have not been able to give a solution of (A.7) in closed form, but the terms of its Taylor
series in the variable δ can be readily calculated. We will write

A(δ, σ ) =
∞∑

k=0

δ2k+1αk(σ ). (A.8)

Then by substituting (A.8) into (A.7) we obtain

α0(σ ) = S ′(σ ), (A.9)

and the recursion relation

αk(σ ) = − 1

(2k + 1)S(σ )

k−1∑
m=0

αk−m−1(σ )α′
m(σ). (A.10)

Using the recursion relation we can easily generate the coefficients αk(σ ) in arbitrary order.
We obtain

α1(σ ) = −S ′(σ )S ′′(σ )

3S(σ)
.

α2(σ ) = S ′(σ )(−S ′(σ )
2
S ′′(σ ) + 2S(σ)S ′′(σ )

2 + S(σ)S ′(σ )S(3)(σ ))

15S(σ)3 ,

α3(σ ) = − S ′(σ )

315S(σ)5
[9S ′(σ )

4
S ′′(σ ) + 17S(σ)2S ′′(σ )

3 − 9S(σ)S ′(σ )
3
S(3)(σ )

+ 26S(σ)2S ′(σ )S ′′(σ )S(3)(σ ) + S(σ)S ′(σ )
2
(−29S ′′(σ )

2 + 3S(σ)S(4)(σ ))],

· · ·
For the special case of �6 = 0, i.e. assuming that the six-dimensional cosmological

constant vanishes, still we get a curved space on the (3+1)-dimensional world. In fact, at least
in solution 1, A(δ, σ ) simplifies considerably. We will consider this case next.
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First, S(σ) = w2, where we introduced the notation w = 1 + aσ . If we also introduce the
notation

z = 1 − aδ

1 + aσ
(A.11)

and we regard A as a function of w and z, then A can be written in the form

A = w2h(z), (A.12)

where h(z) satisfies the ordinary differential equation

2h2 + hh′(1 − z) − h′ = 2. (A.13)

We know the expansion of h(z) around z = 1 already. It is quite interesting to investigate h(z)

around z = 0, as well. The exact point, z = 0 is not physical as aδ < 1 + aσ , but at large u
and small v (near the u axis) z approaches 0. Numerical solution of this equation shows that
h(0)=1 and h′(1) = 0. Of course we know that h(1) = 0. Then we can write h(z) = 1 − k(z)

and expand (A.13) in k, keeping linear terms only. Simple calculation shows that (A.13)
reduces to −4k + zk′ = 0 leading to h(z) = 1 − cz4 + O(z7) (here we also calculated the next
to leading term of k). This form is consistent with the expansion of (A.13) in a power series
of k. The constant c can be identified from the numerical calculation as c = 1/4.

The case �6 �= 0 can also be investigated analytically near z = 0 (near the axes, far from
the origin). Using the ansatz

A(δ, σ ) = S(w) − h(z)f (w) (A.14)

(A.7) can be expanded to retain the first power of h only. One obtains a separable equation

h(z)[S(w)f ′(w) + f (w)S ′(w)] − S(w)f (w)h′(z)z = 0. (A.15)

The solution of this equation is

f (w) = wn

S(w)
, h(z) = czn. (A.16)

Note that in the special case S = w2 the integration constant n = 4.

Appendix B. Junction conditions with gauge transformations

When we perform (12) the components of the metric tensor, guu, gvv and guv change in the
following way (the timelike and ordinary spacelike components are unchanged aside from the
replacements of the variables)

guu = g(u, v)

1 + a(u + v))2
→ g̃uu = R[g̃(u, v)[h,v(v, u)]2 + g̃(v, u)[h,u(v, u)]2],

gvv = g(v, u)

(1 + a(u + v))2
→ g̃vv = R[g̃(v, u)[h,u(u, v)]2 + g̃(u, v)[h,v(u, v)]2], (B.1)

guv = 0 → g̃uv = −R[g̃(v, u)h,u(u, v)h,u(u, v) + g̃(u, v)h,v(v, u)h,v(u, v)],

where we use the notation g̃(u, v) = g(h(u, v), h(v, u)), g̃(v, u) = g(h(v, u), h(u, v)) and
where

R = 1

[h,u(u, v)h,v(v, u) − h,v(u, v)h,u(v, u)]2{1 + a[h(u, v) + h(v, u)]}2
. (B.2)

Now note that the components of the gauge transformed metric tensor at u = v = 0 are
given by g̃uu(0, 0) = g̃vv(0, 0) = g(0, 0)[h,u(u, v)|u=v=0]2. Since normalization requires that
these quantities are equal to 1 we have imposed the condition h,u(u, v)|u=v=0 = 1 on (12).
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In this appendix we will prove that the gauge transformed junction contributions of
the six-dimensional theory can be canceled by the five-dimensional curvature scalar and
cosmological constant terms. First we need to find the gauge transformed form of the junction
contributions (9). We will concentrate only on the contribution at the v = 0 brane as once
we solved the junction conditions at the v = 0 brane, the junction conditions at the u = 0
brane are automatically satisfied considering the symmetry of gauge transformations (12). As
a reminder, we must take linear combination of the 	R̃(6)

uu ,	R̃(6)
vv and 	R̃(6)

uv contributions,
such that they correspond to functional derivatives with respect to the untransformed metric
components. These combinations are

	vR
(6)
µµ = −gµµ

1 + au)2

1 + ah
δ(v)[h,v(v, u)|v=0]3 8ag(h, 0) − (1 + ah)g,v(h, v)|v=0

g(h, 0)g(0, h)
,

(B.3)

	vR
(6)
uu = −guu

(1 + au)2

1 + ah
δ(v)[h,v(v, u)|v=0]3 8ag(h, 0)

g(0, h)
,

where we used the abbreviated notation h = h(u, 0).
Now we are ready to substitute (11) and (B.3) into junction condition (13). Note that

the two conditions (J1(u) = 0 and J2(u) = 0) at AB = µµ and at AB = uu contain two
independent functions: k(u) = h(u, 0) and f (u) = h,v(v, u)|v=0. These two functions are
unconstrained aside from the following conditions: k(0) = 0, k′(0) = 1, f (0) = 1. f (u)

appears in a very simple manner in the two junction conditions as shown by (B.3). We
can easily eliminate this function from the two junction conditions by taking the ratio of the
two junction conditions. The resulting condition (call it F(k(u), u) = 0) is a transcendental
function of k(u) (not a differential equation) and, in principle, can be solved for it. It has the
form

8ag(k, 0) − (1 + ak)g,v(k, v)|v=0

8ag(k, 0)
=

λ(1 + au)2 − �̃5 − 6a2

g(u,0)
− 3ag,u(u,0)(1+au)

2[g[u,0)]2

2λ(1 + au)2 − 8πG5�5 − 6a2

g(u,0)

. (B.4)

Once we solved for k(u) we can calculate f (u) as well. All this can be done provided the
three constraints on k(u) and f (u) are satisfied. Note that due to these three constraints the
junction conditions J1(0) = 0, J2(0) = 0 and dF(h(u), u)/du|u=0 = 0 become independent
of the form of the gauge transformations. All other (higher) derivatives of the junction
conditions contain unconstrained derivatives of the gauge transformation function. These
provide equations for those unconstrained derivatives. We can conclude that the junction
conditions can be solved for the gauge transformations provided three constraints among the
constants of the theory are satisfied. The conditions J1(0) = 0 and J2(0) = 0 were given
earlier in (14) and (15), while the condition dF(f1(u), u)/du|u=0 = 0 was given in (21).
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